## 2025 Tuesday problems #8

## 29 october

| 1  | For | which   | positive | ah   | ie          | $a^{\ln(b)}$ _ | $h^{\ln(a)}$ | 7 |
|----|-----|---------|----------|------|-------------|----------------|--------------|---|
| т. | FOL | willcii | positive | a, o | $_{\rm IS}$ | $a^{(*)} =$    | 0()          |   |

**2.** The Fibonacci numbers are defined by  $f_1 = f_2 = 1$  and  $f_{n+2} = f_{n+1} + f_n$ . Express  $f_1 + f_2 + \cdots + f_n$  in terms of a single Fibonacci number.

**3.** Show that if  $2^n - 1$  is prime, then n is prime.

4. Choose any 1000 (distinct) points in the plane. Does there always exist a straight line which divides the points exactly in two, so that exactly 500 points are on each side of the line and exactly 500 are on the other side?

[A SIDE of a line is one of the two connected components that remain when the line is deleted from the plane.]

5. Consider a sequence of real numbers with the property that the sum of any 7 consecutive terms is positive and the sum of any 11 consecutive terms is negative. Show that such a sequence must be finite, and find the maximum length possible. What if 7 and 11 are replaced by arbitrary (distinct) positive integers?