2025 Tuesday problems #2

10 march

1.	Let $p(x)$ be a polynomial with integer coefficients such that $p(0)$ and $p(1)$ are both odd. Show that $p(0)$ has no integer zeros.
2.	Show that for $n \ge 2$, $(1 + x + \dots + x^n)^2 - x^n$ is the product of two polynomials of positive degree with integer coefficients.
3.	Let $f(x)$ be a polynomial with real coefficients, and suppose that $f(x) + f'(x) > 0$ for all x . Prove that $f(x) > 0$ for all x .
4.	What is the maximum nbumber of rational points that can lie on a circle in \mathbb{R}^2 whose centre is not a rational point? (A RATIONAL POINT is a point both of whose coordinates are rational numbers.)
5.	Let f be a nonconstant polynomial with positive integer coefficients. Prove that if n is a positive integer, then $f(n)$ divides $f(f(n) + 1)$ if and only if $n = 1$